The Jellyfish Cassiopea Exhibits a Sleep-like State.

نویسندگان

  • Ravi D Nath
  • Claire N Bedbrook
  • Michael J Abrams
  • Ty Basinger
  • Justin S Bois
  • David A Prober
  • Paul W Sternberg
  • Viviana Gradinaru
  • Lea Goentoro
چکیده

Do all animals sleep? Sleep has been observed in many vertebrates, and there is a growing body of evidence for sleep-like states in arthropods and nematodes [1-5]. Here we show that sleep is also present in Cnidaria [6-8], an earlier-branching metazoan lineage. Cnidaria and Ctenophora are the first metazoan phyla to evolve tissue-level organization and differentiated cell types, such as neurons and muscle [9-15]. In Cnidaria, neurons are organized into a non-centralized radially symmetric nerve net [11, 13, 15-17] that nevertheless shares fundamental properties with the vertebrate nervous system: action potentials, synaptic transmission, neuropeptides, and neurotransmitters [15-20]. It was reported that cnidarian soft corals [21] and box jellyfish [22, 23] exhibit periods of quiescence, a pre-requisite for sleep-like states, prompting us to ask whether sleep is present in Cnidaria. Within Cnidaria, the upside-down jellyfish Cassiopea spp. displays a quantifiable pulsing behavior, allowing us to perform long-term behavioral tracking. Monitoring of Cassiopea pulsing activity for consecutive days and nights revealed behavioral quiescence at night that is rapidly reversible, as well as a delayed response to stimulation in the quiescent state. When deprived of nighttime quiescence, Cassiopea exhibited decreased activity and reduced responsiveness to a sensory stimulus during the subsequent day, consistent with homeostatic regulation of the quiescent state. Together, these results indicate that Cassiopea has a sleep-like state, supporting the hypothesis that sleep arose early in the metazoan lineage, prior to the emergence of a centralized nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hematological parameters on the effect of the jellyfish venom Cassiopea andromeda in animal models

For the first time, we previously recorded an enormous population of the Cassiopea andromeda jellyfish that had increased dramatically from Bushehr coasts of Iran. The sub-acute toxicity of the jellyfish venom in rat organs was correspondingly carried out. The data presented in this paper relate to the in vivo and in vitro hematological effects of this venomous species of jellyfish venom.

متن کامل

Symbiont carbon and nitrogen assimilation in the Cassiopea–Symbiodinium mutualism

Symbiotic interactions in the marine environment have long been represented by mutualisms between photosymbionts and benthic marine invertebrates like corals and sponges. Although ‘upside-down’ epibenthic jellyfish in the genus Cassiopea also derive a substantial metabolic benefit from abundant communities of the dinoflagellate symbiont Symbiodinium, comparatively little is known about the effi...

متن کامل

Persian Gulf Jellyfish (Cassiopea andromeda) Venom Fractions Induce Selective Injury and Cytochrome C Release in Mitochondria Obtained from Breast Adenocarcinoma Patients

Objective: This study was conducted to investigate whether fractions of jellyfish Cassiope andromeda venom, could selectively induce toxicity on mitochondria isolated from cancer tissue of patients with breast adenocarcinomas. Methods: Firstly, we extracted two fractions, (f1 and f2) from crude jellyfish venom by gel filtration on Sephadex G-200.Then different dilutions of these extracted fract...

متن کامل

Surviving but not thriving: inconsistent responses of zooxanthellate jellyfish polyps to ocean warming and future UV-B scenarios

Complex changes to UV radiation at the Earth's surface are occurring concurrently with ocean warming. Despite few empirical tests, jellyfish are hypothesised to be increasing in some parts of the world because they are robust to environmental stressors. Here we examine the effects of UV-B and ocean warming projections on zooxanthellate jellyfish polyps. We exposed Cassiopea sp. polyps to three ...

متن کامل

Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands

The upside-down jellyfish Cassiopea is a globally distributed, semi-sessile, planktonically dispersed scyphomedusa. Cassiopea occurs in shallow, tropical inshore marine waters on sandy mudflats and is generally associated with mangrove-dominated habitats. Controversy over the taxonomy of upside-down jellyfishes precedes their introduction to the Hawaiian Islands during the Second World War, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current biology : CB

دوره 27 19  شماره 

صفحات  -

تاریخ انتشار 2017